Inverse limits of interval maps: to apply and classify

Henk Bruin

University of Vienna

May 2013
Define the Hénon map $H_{a,b} : \mathbb{R}^2 \to \mathbb{R}^2$:

$$H_{a,b} : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 1 - ax^2 + by \\ x \end{pmatrix}$$

or, if you prefer piecewise linear, the Lozi map $L_{a,b} : \mathbb{R}^2 \to \mathbb{R}^2$:

$$L_{a,b} : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 1 - a|\!|x|\!| + by \\ x \end{pmatrix}$$

Global attractors for the Hénon and Lozi maps
Folding Maps of the Plane

For good parameters \((a \in [1, 2], |b| \geq 0 \text{ small})\), the global attractor is

\[
A = \bigcap_{n \geq 0} H_{a,b}^n(U)
\]

for some forward invariant topological disk \(U\).
Folding Maps of the Plane

For good parameters \((a \in [1, 2], |b| \geq 0\) small), the global attractor is

\[
A = \bigcap_{n \geq 0} H_{a,b}^n(U)
\]

for some forward invariant topological disk \(U\).

\(A\) is compact, connected and of zero Lebesgue measure (if \(|b| < 1\)), but still very complicated.

It is the closure of the unstable manifold of the saddle fixed point

\[
P = \left(\frac{b+\sqrt{b^2+4a}}{2a}, \frac{b+\sqrt{b^2+4a}}{2a} \right).
\]
Folding Maps of the Plane

Question 1: Given only the attactor A, can you reconstruct the map $H_{a,b}$?
Folding Maps of the Plane

Question 1: Given only the attractor A, can you reconstruct the map $H_{a,b}$?

Locally A looks like a Cantor set of arcs, if you’re not too picky!
Question 1: Given only the attractor A, can you reconstruct the map $H_{a,b}$?

Locally A looks like a Cantor set of arcs, if you’re not too picky! In reality, there is a lot of substructure making A inhomogeneous.
Folding Maps of the Plane

Question 1: Given only the attactor A, can you reconstruct the map $H_{a,b}$?

Locally A looks like a Cantor set of arcs, if you’re not too picky! In reality, there is a lot of substructure making A inhomogeneous.

Question 1 sharper: Given only A as topological space (so without embedding in the plane), can you reconstruct the map $H_{a,b}$?
For a continuous map $T : X \to X$ on a compact topological space, the inverse limit is the space of backward orbits:

$$\lim \langle X, T \rangle = \{ \ldots x_{-2}, x_{-1}, x_0 : T(x_{-k-1}) = x_{-k} \in X \ \forall \ k \geq 0 \}.$$
Inverse Limit Spaces

For a continuous map $T : X \to X$ on a compact topological space, the inverse limit is the space of backward orbits:

$$\lim\leftarrow (X, T) = \{ \ldots x_{-2}, x_{-1}, x_0 : T(x_{-k-1}) = x_{-k} \in X \ \forall \ k \geq 0 \}.$$

It is equipped with product topology and (now invertible) map

$$\hat{T} : \lim\leftarrow (X, f) \to \lim\leftarrow (X, T)$$

$$(\ldots x_{-2}, x_{-1}, x_0) \mapsto (\ldots x_{-2}, x_{-1}, x_0, T(x_0))$$

A priori, \hat{T} is defined on the Hilbert cube $X^\mathbb{N}$, but embeddings into simpler spaces usually exist.
Folding Maps

For $b = 0,$

$$L_{a,b} : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 1 - a|x| + 0 \cdot y \\ x \end{pmatrix}$$

is non-invertible. Taking $b > 0$ "thickens up" the map, giving each half of a horizontal line two distinct preimage branches.
Folding Maps

For $b = 0$,

$$L_{a,b} : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 1 - a|x| + 0 \cdot y \\ x \end{pmatrix}$$

is non-invertible. Taking $b > 0$ "thickens up" the map, giving each half of a horizontal line two distinct preimage branches.
Folding Maps

For $b = 0$,

$$L_{a,b} : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 1 - a|x| + 0 \cdot y \\ x \end{pmatrix}$$

is non-invertible. Taking $b > 0$ "thickens up" the map, giving each half of a horizontal line two distinct preimage branches.

This is mimicked by inverse limit spaces of tent maps $T_a(x) = 1 - a|x|$.

Similar for Hénon map $H_{a,b}$ and quadratic map $f_a(x) = 1 - ax^2$.
Folding Maps

Unimodal inverse limits are simpler than Hénon attractors:

U
Folding Maps

Unimodal inverse limits are simpler than Hénon attractors:

\[U_{H_{a,b}}(U) \]
Folding Maps

Unimodal inverse limits are simpler than Hénon attractors:
Folding Maps

Unimodal inverse limits are simpler than Hénon attractors:

\[H_{a,b}^n(U) \]

Band of folds (critical values) \{ contracts under \(\hat{f}^n \).

expands and keeps folding under \(H_{a,b}^n \).
Folding Maps

Unimodal inverse limits are simpler than Hénon attractors:

Band of folds (critical values) \[
\begin{cases}
\text{contracts under } \hat{f}^n. \\
\text{expands and keeps folding under } H_{a,b}^n
\end{cases}
\]

By a different argument, Barge (1987) showed that in general, a Hénon attractors are not homeomorphic with an inverse limit space of a single one-dimensional bonding map.
Sometimes, however, Hénon attractors are homeomorphic with quadratic inverse limits.

Theorem (Barge & Holte)

If \(a \in [1, 2] \) is such that \(f_a(x) = 1 - ax^2 \) has an attracting periodic point, then for \(|b|\) sufficiently small

\[
\lim_{\leftarrow}([1 - a, 1], f_a) \simeq \text{global attractor of } H_{a,b}.
\]
Sometimes, however, Hénon attractors are homeomorphic with quadratic inverse limits.

Theorem (Barge & Holte)

If $a \in [1, 2]$ *is such that* $f_a(x) = 1 - ax^2$ *has an attracting periodic point, then for* $|b|$ *sufficiently small*

$$\lim_{\rightarrow}([1 - a, 1], f_a) \simeq \text{global attractor of } H_{a,b}.$$

Question 2: Are there different periodic a, a' such that $H_{a,b}$ and $H_{a',b}$ have homeomorphic global attractors?
Inverse limits and hyperbolic maps

Theorem (Williams in 1970s)

For every hyperbolic diffeomorphism f on a manifold M, there is a map g on a branched manifold N such that the global attractor of f is homeomorphic with $\lim(M, f)$.

Example 1: Solenoids within solid torus $g: S^1 \to S^1, x \mapsto 2x \mod 1$.

Example 2: Smale's horseshoe on square with caps $g: [-1, 1] \to [-1, 1], x \mapsto 1 - 2x^2$.

Solenoid and Horseshoe Map.
Inverse limits and hyperbolic maps

Theorem (Williams in 1970s)

For every hyperbolic diffeomorphism f on a manifold M, there is a map g on a branched manifold N such that the global attractor of f is homeomorphic with $\lim(M, f)$.

Example 1: Solenoids within solid torus

$$g : \mathbb{S}^1 \to \mathbb{S}^1, \quad x \mapsto 2x \pmod{1}.$$

Example 2: Smale’s horseshoe on square with caps.

$$g : [-1, 1] \to [-1, 1], \quad x \mapsto 1 - 2x^2.$$
Inverse limits and hyperbolic maps

Theorem (Bing ’60, McCord ’65: Classifying Solenoids)

Let \(g_k : S^1 \to S^1, \ x \mapsto a_k x \pmod{1} \) for an integer sequence \(a_k \geq 2 \), and similar for \(\hat{a}_k \geq 2 \). Then

\[
\lim_{\leftarrow} (S^1, g_k) \simeq \lim_{\leftarrow} (S^1, \hat{g}_k)
\]

if and only if for every prime \(p \)

\[p | a_k \text{ infinitely often if and only if } p | \hat{a}_k \text{ infinitely often.} \]
Inverse limits and hyperbolic maps

Theorem (Bing ’60, McCord ’65: Classifying Solenoids)
Let \(g_k : \mathbb{S}^1 \to \mathbb{S}^1, \ x \mapsto a_k x \pmod{1} \) for an integer sequence \(a_k \geq 2 \), and similar for \(\hat{a}_k \geq 2 \). Then

\[
\lim_{\leftarrow} (\mathbb{S}^1, g_k) \simeq \lim_{\leftarrow} (\mathbb{S}^1, \hat{g}_k)
\]

if and only if for every prime \(p \)

\[p \mid a_k \text{ infinitely often if and only if } p \mid \hat{a}_k \text{ infinitely often.} \]

Theorem (Watkins ’82: Classifying Knaster Continua)
Let \(h_r : [0, 1] \to [0, 1] \) be the hat-map with \(r \) branches. Then

\[
\lim_{\leftarrow} ([0, 1], h_r) \simeq \lim_{\leftarrow} ([0, 1], h_{r'})
\]

if and only if

\(r \) and \(r' \) are powers of the same integer.
The Ingram Conjecture

Define the **tent map** $T_s : [0, 1] \rightarrow [0, 1]$ as

$$T_s(x) = \min\{sx, s(1 - x)\}$$

with slope $s \in (1, 2]$, $c_k = T_s^k(\frac{1}{2})$ and core $[c_2, c_1]$.
The Ingram Conjecture

Define the tent map $T_s : [0, 1] \rightarrow [0, 1]$ as

$$T_s(x) = \min\{sx, s(1-x)\}$$

with slope $s \in (1, 2)$,

$$c_k = T^k_s\left(\frac{1}{2}\right)$$

and core $[c_2, c_1]$.

Conjecture (Ingram’s Conjecture)

If the slopes $1 \leq s < s' \leq 2$, then

$$\lim([0, 1], T_s) \not\sim \lim([0, 1], T_{s'}).$$
The Ingram Conjecture - Partial Results

If $c = \frac{1}{2}$ has period n under T_s, then $\lim([c_2, c_1], T_s)$ has n endpoints, and elsewhere it is locally a Cantor set of arcs.
The Ingram Conjecture - Partial Results

If \(c = \frac{1}{2} \) has period \(n \) under \(T_s \), then \(\lim([c_2, c_1], T_s) \) has \(n \) endpoints, and elsewhere it is locally a Cantor set of arcs.

Endpoints are topologically distinguishable, so

\[
\lim([c_2, c_1], T_s) \not\cong \lim([c_2, c_1], T_{s'})
\]

if the critical points of \(T_s \) and \(T_{s'} \) have different periods. However, there can still be different slopes achieving the same period. (E.g. there are three slopes for period 5.)
The Ingram Conjecture (IC) - History

Tom Ingram ≤ 1995 Attributed it to Stewart Baldwin.
Barge & Diamond (1995) IC holds for period 5.
Swanson & Volkmer (2000) IC holds for period ≤ 15.
Kailhofer (2003) IC holds for all periods.
Štimac (2007) IC holds for all preperiods.
The Ingram Conjecture (IC) - History

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tom Ingram</td>
<td>≤ 1995</td>
<td>Attributed it to Stewart Baldwin.</td>
</tr>
<tr>
<td>Barge & Diamond</td>
<td>1995</td>
<td>IC holds for period 5.</td>
</tr>
<tr>
<td>Swanson & Volkmer</td>
<td>2000</td>
<td>IC holds for period (\leq 15).</td>
</tr>
<tr>
<td>Kailhofer</td>
<td>2003</td>
<td>IC holds for all periods.</td>
</tr>
<tr>
<td>Štimac</td>
<td>2007</td>
<td>IC holds for all preperiods.</td>
</tr>
<tr>
<td>Barge, Bruin & Štimac</td>
<td>2013</td>
<td>IC holds for all slopes.</td>
</tr>
</tbody>
</table>
Further Results

Theorem (Bruin & Štimac (2012))

- For every homeomorphism g of $\lim([0, 1], T_s)$ with slope $s \in (\sqrt{2}, 2]$, there is $R \in \mathbb{Z}$ such that g is isotopic to \hat{T}^R.
- The entropy $h_{top}(g) = |R| \log s$.
- If $\text{orb}(c)$ is dense in $[c_2, c_1]$ (and this holds for a.e. slope in $[\sqrt{2}, 2]$), then
 \[g\mid_{\lim([c_2, c_1], T_s)} = \hat{T}^R. \]
Further Results

Theorem (Bruin & Štimac (2012))

- For every homeomorphism g of $\lim([0,1], T_s)$ with slope $s \in (\sqrt{2}, 2]$, there is $R \in \mathbb{Z}$ such that g is isotopic to \hat{T}^R.
- The entropy $h_{\text{top}}(g) = |R| \log s$.
- If $\text{orb}(c)$ is dense in $[c_2, c_1]$ (and this holds for a.e. slope in $[\sqrt{2}, 2]$), then
 \[g|_{\lim([c_2, c_1], T_s)} = \hat{T}^R. \]

Remark: The quadratic family $f_s(x) = sx(1 - x)$ is richer than the tent family, because it allows renormalization (i.e., existence of non-trivial periodic intervals). The Ingram Conjecture for quadratic inverse limits $\lim([0,1], f_s)$ is completely understood, and also the possible values of $h_{\text{top}}(g)$ for homeomorphisms g on $\lim([0,1], f_s)$.
Subcontinua and Selfsimilarity

A subcontinuum of X is a compact connected proper subset of X.

Theorem (Barge, Brucks & Diamond 1996)

For a.e. slope $s \in [1, 2]$ and every $t \in [0, 2]$, the inverse limit

$$X = \lim_{\leftarrow}([0, 1], T_s)$$

contains subcontinua X_t that are homeomorphic to $\lim_{\leftarrow}([0, 1], T_t)$.
A subcontinuum of X is a compact connected proper subset of X.

Theorem (Barge, Brucks & Diamond 1996)

For a.e. slope $s \in [1, 2]$ and every $t \in [0, 2]$, the inverse limit

$$X = \lim \left([0, 1], T_s \right)$$

contains subcontinua X_t that are homeomorphic to $\lim \left([0, 1], T_t \right)$.

The same property (under mild conditions) is true for Hénon attractors and homoclinic tangles.

Question 3: Do Hénon attractors contain subcontinua homeomorphic with any other Hénon attractor?
Asymptotic Arc-Components

Two arc-components C and C' are asymptotic if they can be parametrized by $\phi : \mathbb{R} \to C$, $\phi' : \mathbb{R} \to C'$, such that the distance

$$d(\phi(t), \phi'(t)) \to 0 \text{ as } t \to \infty.$$
Asymptotic Arc-Components

Two arc-components C and C' are asymptotic if they can be parametrized by $\phi : \mathbb{R} \to C$, $\phi' : \mathbb{R} \to C'$, such that the distance

$$d(\phi(t), \phi'(t)) \to 0 \text{ as } t \to \infty.$$
Asymptotic Arc-Components

Theorem (Barge & Diamond 1995, Bruin 2005)

- If the critical point c of T_s has periodic n, then $\lim \leftarrow (\[0, 1], T_s)$ has between 1 and $2n - 4$ asymptotic arc-components.
- $2n - 4$ is sharp; patterns of arc-components can be computed.
- If c pre-periodic, then there are no asymptotic arc-components.

Question 4: Are there "non-trivial" asymptotic arc-components in $\lim \leftarrow (\[0, 1], T_s)$ if T_s has an infinite critical orbit?

Question 5: Are there asymptotic arc-components in "non-trivial" Hénon attractors?
Asymptotic Arc-Components

Theorem (Barge & Diamond 1995, Bruin 2005)

- If the critical point c of T_s has periodic n, then $\lim(\mathbb{I}, T_s)$ has between 1 and $2n - 4$ asymptotic arc-components.
- $2n - 4$ is sharp; patterns of arc-components can be computed.
- If c is pre-periodic, then there are no asymptotic arc-components.

Question 4: Are there "non-trivial" asymptotic arc-components in $\lim(\mathbb{I}, T_s)$ if T_s has an infinite critical orbit?

Question 5: Are there asymptotic arc-components in "non-trivial" Hénon attractors?
Asymptotic Arc-Components

Theorem (Barge & Diamond 1995, Bruin 2005)

- If the critical point c of T_s has periodic n, then $\lim_{\leftarrow}([0,1], T_s)$ has between 1 and $2n - 4$ asymptotic arc-components.
- $2n - 4$ is sharp; patterns of arc-components can be computed.
- If c pre-periodic, then there are no asymptotic arc-components.

Question 4: Are there ”non-trivial” asymptotic arc-components in $\lim_{\leftarrow}([0,1], T_s)$ if T_s has an infinite critical orbit?

Question 5: Are there asymptotic arc-components in ”non-trivial” Hénon attractors?
About the Proof of the Ingram Conjecture

Inverse limits $\lim\limits_{\leftarrow}([0, 1], T)$ are chainable: For every $\epsilon > 0$ there is a chain $C = (\ell_j)_{j=1}^N$ such that

$$\lim\limits_{\leftarrow}([0, 1], T) \subset \bigcup_{j=1}^N \text{ and } \ell_j \cap \ell_k \neq \emptyset \text{ iff } |j - k| \leq 1.$$

The proof is based on how the arc-component Z_0 that contains the endpoint $\bar{0} = (\ldots 0, 0, 0)$, folds through such chains.
About the Proof of the Ingram Conjecture

An arc \(A \subset Z_0 \) is link-symmetric if it passes through \(C \) in a symmetric way:

The list of indices of the links that \(A \) passes through should be a palindrome.
About the Proof of the Ingram Conjecture

An arc $A \subset \mathbb{Z}_0$ is link-symmetric if it passes though C in a symmetric way:

The list of indices of the links that A passes through should be a palindrome.

Homeomorphismms map link-symmetric arcs to link-symmetric arcs.
About the Proof of the Ingram Conjecture

An arc $A \subset \mathbb{Z}_0$ is link-symmetric if it passes through C in a symmetric way:

The list of indices of the links that A passes through should be a palindrome.

Homeomorphisms map link-symmetric arcs to link-symmetric arcs.

We study how \mathbb{Z}_0 is composed of a concatenation of maximal link-symmetric arcs. Homeos send maximal link-symmetric arcs to maximal link-symmetric arcs.
About the Proof of the Ingram Conjecture

Homeos send $\bar{0}$ to $\bar{0}$. Now the main step is to show that the pattern of concatenated maximal link-symmetric arcs uniquely characterizes $\lim_{\rightarrow}([0, 1], T_s)$.

Question 6: Does the Ingram Conjecture hold for the core $\lim_{\rightarrow}([c_2, c_1], T_s)$?
About the Proof of the Ingram Conjecture

Homeos send $\bar{0}$ to $\bar{0}$. Now the main step is to show that the pattern of concatenated maximal link-symmetric arcs uniquely characterizes $\lim([0, 1], T_s)$.

Thus, in the proof, Z_0 is essential. However, we can decompose

$$\lim([0, 1], T_s) = \underbrace{\text{inv. limit}}_{Z_0 \square \underbrace{\text{zero comp.}}_{\lim([c_2, c_1], T_s)}, \underbrace{\text{core}}}_{\text{in which the core is indecomposable (for slopes } s \in (\sqrt{2}, 2)]}$$
About the Proof of the Ingram Conjecture

Homeos send $\tilde{0}$ to $\tilde{0}$. Now the main step is to show that the pattern of concatenated maximal link-symmetric arcs uniquely characterizes $\lim([0, 1], T_s)$.

Thus, in the proof, Z_0 is essential. However, we can decompose

$$\lim([0, 1], T_s) = \underbrace{\text{inv. limit}}_{Z_0 \sqcup \text{zero comp.}} \underbrace{\lim([c_2, c_1], T_s),}_{\text{core}}$$

in which the core is indecomposable (for slopes $s \in (\sqrt{2}, 2]$).

Question 6: Does the Ingram Conjecture hold for the core $\lim([c_2, c_1], T_s)$?
Fibonacci-like Inverse Limits

Call \(x \in [0, 1] \) a closest precritical point if

\[
\begin{align*}
T^n(x) &= c \quad \text{for some } n \geq 1; \\
T^m(y) &\neq c \quad \text{for } 1 \leq m \leq n, y \in (x, c].
\end{align*}
\]

Such \(n \) is called cutting time. The sequence of cutting times is

\[1 = S_0 < S_1 < \ldots\]
Fibonacci-like Inverse Limits

Call $x \in [0, 1]$ a closest precritical point if

$$\begin{cases} T^n(x) = c & \text{for some } n \geq 1; \\ T^m(y) \neq c & \text{for } 1 \leq m \leq n, y \in (x, c]. \end{cases}$$

Such n is called cutting time. The sequence of cutting times is

$$1 = S_0 < S_1 < \ldots$$

Definition (Fibonacci and Fibonacci-like maps)

Unimodal map $T : [0, 1] \to [0, 1]$ is a Fibonacci map if the cutting times are the Fibonacci numbers:

$$S_0 = 1, \quad S_1 = 2, \quad S_k = S_{k-1} + S_{k-2}.$$

T is Fibonacci-like if $S_k - S_{k-1}$ eventually increasing to ∞.

Fibonacci-like Inverse Limits

Theorem (Bruin & Štimac)

If T is a Fibonacci-like tent map, then

$\lim \left([0, 1], T \right)$ contains uncountably many endpoints.
Fibonacci-like Inverse Limits

Theorem (Bruin & Štimac)

If T is a Fibonacci-like tent map, then

- $\lim_{\leftarrow}([0, 1], T)$ contains uncountably many endpoints.
- A proper subcontinuum of $\lim_{\leftarrow}([c_2, c_1], T)$ is homeomorphic with a point, arc or $\sin \frac{1}{x}$-continuum. No subcontinua more complicated than those.

A $\sin \frac{1}{x}$-continuum is the closure of the graph of $\sin \frac{1}{x}$ on $(-\infty, 0)$.
Fibonacci-like Inverse Limits

Theorem (Bruin & Štimac)

If T is a Fibonacci-like tent map, then

- $\lim (\left[0, 1\right], T)$ contains uncountably many endpoints.
- A proper subcontinuum of $\lim (\left[c_2, c_1\right], T)$ is homeomorphic with a point, arc or sin $\frac{1}{x}$-continuum. No subcontinua more complicated than those.

A sin $\frac{1}{x}$-continuum is the closure of the graph of $\sin \frac{1}{x}$ on $(-\infty, 0)$

- The core Ingram conjecture holds for $\lim (\left[c_2, c_1\right], T)$.

The Ingram Conjecture - Revised History

- **Barge & Diamond** core IC holds for period 5.
- **Swanson & Volkmer** core IC holds for period \(\leq 15 \).
- **Kailhofer** core IC holds for all periods.
- **Štimac** core IC holds for all preperiods.
- **Barge, Bruin & Štimac** IC holds for all slopes.

Some day we will prove the general Core Ingram Conjecture, but the real challenge is to classify Hénon-like attractors.
The Ingram Conjecture - Revised History

Barge & Diamond core IC holds for period 5.

Swanson & Volkmer core IC holds for period \(\leq 15 \).

Kailhofer core IC holds for all periods.

Štimac core IC holds for all preperiods.

Barge, Bruin & Štimac IC holds for all slopes

Bruin & Štimac (2013) core IC holds for all Fibonacci-likes.

Some day we will prove the general Core Ingram Conjecture, but....
The Ingram Conjecture - Revised History

<table>
<thead>
<tr>
<th>Researcher</th>
<th>Core IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barge & Diamond</td>
<td>IC holds for period 5.</td>
</tr>
<tr>
<td>Swanson & Volkmer</td>
<td>IC holds for period (\leq 15).</td>
</tr>
<tr>
<td>Kailhofer</td>
<td>IC holds for all periods.</td>
</tr>
<tr>
<td>Štimac</td>
<td>IC holds for all preperiods.</td>
</tr>
<tr>
<td>Barge, Bruin & Štimac</td>
<td>IC holds for all slopes</td>
</tr>
<tr>
<td>Bruin & Štimac (2013)</td>
<td>IC holds for all Fibonacci-likes.</td>
</tr>
</tbody>
</table>

Some day we will prove the general **Core Ingram Conjecture**, but....

the real challenge is to classify Hénon-like attractors.
Reference

More References